The 14th Romanian Master of Mathematics Competition

Day 1: Wednesday, March 1st, 2023, Bucharest

Language: English

Problem 1. Determine all prime numbers p and all positive integers x and y satisfying

$$x^3 + y^3 = p(xy + p).$$

Problem 2. Fix an integer $n \ge 3$. Let S be a set of n points in the plane, no three of which are collinear. Given different points A, B, C in S, the triangle ABC is nice for AB if $Area(ABC) \le Area(ABX)$ for all X in S different from A and B. (Note that for a segment AB there could be several nice triangles.) A triangle is *beautiful* if its vertices are all in S and it is nice for at least two of its sides.

Prove that there are at least $\frac{1}{2}(n-1)$ beautiful triangles.

Problem 3. Let $n \ge 2$ be an integer, and let f be a 4n-variable polynomial with real coefficients. Assume that, for any 2n points $(x_1, y_1), \ldots, (x_{2n}, y_{2n})$ in the Cartesian plane, $f(x_1, y_1, \ldots, x_{2n}, y_{2n}) = 0$ if and only if the points form the vertices of a regular 2n-gon in some order, or are all equal.

Determine the smallest possible degree of f.

(Note, for example, that the degree of the polynomial

$$g(x,y) = 4x^3y^4 + yx + x - 2$$

is 7 because 7 = 3 + 4.)

Each problem is worth 7 marks. Time allowed: $4\frac{1}{2}$ hours.

The 14th Romanian Master of Mathematics Competition

Day 2: Thursday, March 2nd, 2023, Bucharest

Language: English

Problem 4. Given an acute triangle ABC, let H and O be its orthocentre and circumcentre, respectively. Let K be the midpoint of the line segment AH. Also let ℓ be a line through O, and let P and Q be the orthogonal projections of B and C onto ℓ , respectively.

Prove that $KP + KQ \ge BC$.

Problem 5. Let P(x), Q(x), R(x) and S(x) be non-constant polynomials with real coefficients such that P(Q(x)) = R(S(x)). Suppose that the degree of P(x) is divisible by the degree of R(x).

Prove that there is a polynomial T(x) with real coefficients such that

P(x) = R(T(x)).

Problem 6. Let r, g, b be non-negative integers. Let Γ be a connected graph on r + g + b + 1 vertices. The edges of Γ are each coloured red, green or blue. It turns out that Γ has

- a spanning tree in which exactly r of the edges are red,
- a spanning tree in which exactly g of the edges are green and
- a spanning tree in which exactly b of the edges are blue.

Prove that Γ has a spanning tree in which exactly r of the edges are red, exactly g of the edges are green and exactly b of the edges are blue.

(A spanning tree of Γ is a graph which has the same vertices as Γ , with edges which are also edges of Γ , for which there is exactly one path between each pair of different vertices.)

Each problem is worth 7 marks. Time allowed: $4\frac{1}{2}$ hours.